Functional MRI of Auditory Responses in the Zebra Finch Forebrain Reveals a Hierarchical Organisation Based on Signal Strength but Not Selectivity

نویسندگان

  • Tiny Boumans
  • Sharon M. H. Gobes
  • Colline Poirier
  • Frederic E. Theunissen
  • Liesbeth Vandersmissen
  • Wouter Pintjens
  • Marleen Verhoye
  • Johan J. Bolhuis
  • Annemie Van der Linden
چکیده

BACKGROUND Male songbirds learn their songs from an adult tutor when they are young. A network of brain nuclei known as the 'song system' is the likely neural substrate for sensorimotor learning and production of song, but the neural networks involved in processing the auditory feedback signals necessary for song learning and maintenance remain unknown. Determining which regions show preferential responsiveness to the bird's own song (BOS) is of great importance because neurons sensitive to self-generated vocalisations could mediate this auditory feedback process. Neurons in the song nuclei and in a secondary auditory area, the caudal medial mesopallium (CMM), show selective responses to the BOS. The aim of the present study is to investigate the emergence of BOS selectivity within the network of primary auditory sub-regions in the avian pallium. METHODS AND FINDINGS Using blood oxygen level-dependent (BOLD) fMRI, we investigated neural responsiveness to natural and manipulated self-generated vocalisations and compared the selectivity for BOS and conspecific song in different sub-regions of the thalamo-recipient area Field L. Zebra finch males were exposed to conspecific song, BOS and to synthetic variations on BOS that differed in spectro-temporal and/or modulation phase structure. We found significant differences in the strength of BOLD responses between regions L2a, L2b and CMM, but no inter-stimuli differences within regions. In particular, we have shown that the overall signal strength to song and synthetic variations thereof was different within two sub-regions of Field L2: zone L2a was significantly more activated compared to the adjacent sub-region L2b. CONCLUSIONS Based on our results we suggest that unlike nuclei in the song system, sub-regions in the primary auditory pallium do not show selectivity for the BOS, but appear to show different levels of activity with exposure to any sound according to their place in the auditory processing stream.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functional MRI of the zebra finch brain during song stimulation suggests a lateralized response topography.

Electrophysiological and activity-dependent gene expression studies of birdsong have contributed to the understanding of the neural representation of natural sounds. However, we have limited knowledge about the overall spatial topography of song representation in the avian brain. Here, we adapt the noninvasive functional MRI method in mildly sedated zebra finches (Taeniopygia guttata) to locali...

متن کامل

Selectivity for conspecific song in the zebra finch auditory forebrain.

The selectivity of neurons in the zebra finch auditory forebrain for natural sounds was investigated systematically. The principal auditory forebrain area in songbirds consists of the tonotopically organized field L complex, which, by its location in the auditory processing stream, can be compared with the auditory cortex of mammals. We also recorded from a secondary auditory area, cHV. Field L...

متن کامل

Activation and habituation of extracellular signal-regulated kinase phosphorylation in zebra finch auditory forebrain during song presentation.

The sound of tape-recorded birdsong triggers a set of behavioral and physiological responses in zebra finches, including transcriptional activation of the zenk gene in the auditory forebrain. Song repetition leads to the stimulus-specific habituation of these responses. To gain insight into the mechanisms that couple auditory experience to gene regulation, we monitored the phosphorylation of th...

متن کامل

Modulation power and phase spectrum of natural sounds enhance neural encoding performed by single auditory neurons.

We examined the neural encoding of synthetic and natural sounds by single neurons in the auditory system of male zebra finches by estimating the mutual information in the time-varying mean firing rate of the neuronal response. Using a novel parametric method for estimating mutual information with limited data, we tested the hypothesis that song and song-like synthetic sounds would be preferenti...

متن کامل

Large-scale synchronized activity during vocal deviance detection in the zebra finch auditory forebrain.

Auditory systems bias responses to sounds that are unexpected on the basis of recent stimulus history, a phenomenon that has been widely studied using sequences of unmodulated tones (mismatch negativity; stimulus-specific adaptation). Such a paradigm, however, does not directly reflect problems that neural systems normally solve for adaptive behavior. We recorded multiunit responses in the caud...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • PLoS ONE

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2008